Abstrakt

Research on remote vehicle intelligent diagnosis based on KNN

Miu Kehua, Li xiaokun


This paper provides a remote vehicle diagnosis system, which is designed to locate the specific time when an occasional malfunction happened from the abundant vehicle’s ECU data flow. The system has been designed with an ability to learn by itself, using the wrong cases to retrain the classifier and raise system diagnosis rate. Through studying the occasional low-speed flameout, we come to a conclusion that 83.3% diagnosis rate and nanosecond-class diagnosis efficiency can totally meet requirement


Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert

Indiziert in

  • CASS
  • Google Scholar
  • Öffnen Sie das J-Tor
  • Nationale Wissensinfrastruktur Chinas (CNKI)
  • CiteFactor
  • Kosmos IF
  • Verzeichnis der Indexierung von Forschungszeitschriften (DRJI)
  • Geheime Suchmaschinenlabore
  • Euro-Pub
  • ICMJE

Mehr sehen

Zeitschrift ISSN

Flyer